1.A. Berkani, N. E. Tatar & A. Khemmoudj,Control of a viscoelastic translational Euler-Bernoulli beam, Mathematical Methods in the Applied Sciences,http://dx.doi.org/10.1002/mma.3985.
- A. Kelleche, N. E. Tatar & A. Khemmoudj,Stability of an Axially Moving Viscoelastic Beam, Journal of Dynamical and Controls Systems , 2016, http://dx.doi.org/10.1007/s10883-016-9317-8.
- A. Kelleche, N. E. Tatar & A. Khemmoudj,Uniform Stabilization of an Axially Moving Kirchhoff String by a Boundary Control of Memory Type, Journal of and Dynamical Control systems , 2016, http://dx.doi.org/10.1007/s10883-016-9310-2.
- A. Touzaline, Optimal control of a frictional contact problem. Acta Math. Appl. Sin., Engl. Ser. 31, No. 4, 991-1000 (2015).
- A. Touzaline, A quasistatic contact problem with unilateral constraint and slip-dependent friction. Appl. Math. 42, No. 2, 167-182 (2015).
- A. Touzaline, A viscoelastic frictionless contact problem with adhesion. Bull. Pol. Acad. Sci., Math. 63, No. 1, 53-66 (2015).
- Nadia Metref, Analyse des systèmes dynamique continus linéaires à double échelle de temps, Prépublications Faculté de Mathématiques,USTHB,N°365/2015 (2015)
- Nadia Metref, Stabilité des systèmes singulièrement perturbés, Prépublications Facultéde Mathématiques,USTHB,N°364/2015 (2015)
- Ammar Khemmoudj & Taklit Hamadouche,Bounady Stabilization of Bresse-type system, Mathematical Methods in the Applied Sciences, 2015, DOI: 10.1002/mma.3773.
- L. Seghour, A. Khemmoudj & N. E. Tatar,Control of a riser through the dynamic of the vessel, Applicable Analysis: A international Journal, 2015, DOI: 10.1080/00036811.2015.1080249.
- A. Khemmoudj, L. Seghour, Exponential stabilization of a viscoelastic wave equation with dynamic boundary conditions, Nonlinear Deferential Equations and Applications, Springer Basel, (2015) DOI: 10.1007/s00030-015-0322-5
- K. M’hamed-Messaoud, A. Kessi,and T. Laadj, On Sufficient Conditions for the Existence of Solutions for First Order Equations and Fourth Degree with the PainlevéProperty. Qualitative Theory of Dynamical Systems 2015; DOI:10.1007/s12346-015-0144-1
- Rachid Bebbouchi, Mohamed Ghouali, About a Predator-Prey Model with Stage Structure for the Prey, International Journal of Mathematics and Computation, Vol 216, N°4 pp 81-86 (2015)
- L. Seghour, A. Khemmoudj, N.-E. Tatar, Control of a riser through the dynamic of a vessel, Applicable Analysis; An international Journal, (2015) DOI:10.1080/00036811.2015.1080249
- A. Touzaline, Adhesive contact of an elastic body with prescribed normal stress and total slip-dependent friction. II: Existence and uniqueness of solution. Bull. Soc. Sci. Lett. Łódź, Sér. Rech. Déform. 64, No. 1, 83-90 (2014).
- A. Touzaline, Adhesive contact of an elastic body with prescribed normal stress and total slip-dependent friction. I: Problem statement and variational formulation. Bull. Soc. Sci. Lett. Łódź, Sér. Rech. Déform. 64, No. 1, 75-82 (2014).
- A. Touzaline, A study of a unilateral and adhesive contact problem with normal compliance. Appl. Math. 41, No. 4, 385-402 (2014).
- D. Cheriet, R. Bebbouchi, The Osgood Integral or the Cauchy-Osgood Integral? Journal of Mathematics and System Science, 4, pp 155-157(2014).
- A. Touzaline, Analysis of a viscoelastic unilateral and frictional contact problem with adhesion. Stud. Univ. Babeş-Bolyai, Math. 58, No. 2, 263-278 (2013).
- R. Guettaf, & A. Touzaline, Analysis of a contact problem with adhesion for electro-viscoelastic materials with long memory. Rev. Roum. Math. Pures Appl. 58, No. 1, 67-84 (2013).
- A. Touzaline, A viscoelastic frictional contact problem with adhesion. An. Univ. Oradea, Fasc. Mat. 20, No. 1, 71-82 (2013).
- M.Z. Hadadine, L. Belaib, R. Bebbouchi, Periodical Rivers. Theoretical Mathematics and Applications, vol 3 n°1 (2013) pp 11-18.
- A. Touzaline, Analysis of a contact adhesive problem with normal compliance and nonlocal friction. Ann. Pol. Math. 104, No. 2, 175-188 (2012).
- A. Touzaline, Study of a contact problem with normal compliance and nonlocal friction. Appl. Math. 39, No. 1, 43-55 (2012).
- A. Touzaline, A quasistatic unilateral contact problem with normal compliance and nonlocal friction. Rev. Roum. Math. Pures Appl. 56, No. 3, 235-251 (2011).
- A. Touzaline, Study of a quasistatic contact problem in viscoelasticity. Glas. Mat., III. Ser. 46, No. 2, 439-454 (2011).
- A. Touzaline, Study of a viscoelastic frictional contact problem with adhesion.Commentat. Math. Univ. Carol. 52, No. 2, 257-272 (2011).
- R. Bebbouchi, Astronomie-Astrologie : complémentarité ou symbiose ?, revue El-Madar (cité des sciences de Tunis) 2011.
- A. Touzaline, On the solvability of a quasistatic contact problem for elastic materials. Bull. Soc. Sci. Lett. Łódź, Sér. Rech. Déform. 60, No. 2, 15-31 (2010).
- A. Touzaline, Analysis of a viscoelastic frictionless contact problem with adhesion. REV. ROUMAINE MATH. PURES APPLI. 55 (2010), 5, 411–430.
- A. Touzaline, A quasistatic bilateral contact problem with adhesion and friction for viscoelastic materials. Commentat. Math. Univ. Carol. 51, No. 1, 85-97 (2010).
- A. Touzaline, Analysis and numerical approximation of a frictional unilateral contact problem with normal compliance. Can. Appl. Math. Q. 18, No. 2, 195-211 (2010).
- A. Touzaline, Analysis of a bilateral contact problem with adhesion and friction for elastic materials. Stud. Univ. Babeş-Bolyai, Math. 55, No. 2, 197-212 (2010).
- A. Touzaline, Analysis of a quasistatic contact problem with adhesion and nonlocal friction for viscoelastic materials. Appl. Math. Mech., Engl. Ed. 31, No. 5, 623-634 (2010).
- A. Touzaline, Analysis of a contact problem with slip dependent coefficient of friction and adhesion for nonlinear elastic materials. An. Univ. Oradea, Fasc. Mat. 17, No. 2, 155-166 (2010).
- A. Touzaline, A quasistatic frictional contact problem with normal compliance and finite penetration for elastic materials. Glas. Mat., III. Ser. 45, No. 1, 109-124 (2010).
- A. Touzaline, Frictionless contact problem with adhesion and finite penetration for elastic materials. Ann. Pol. Math. 98, No. 1, 23-38 (2010).
- A. Touzaline, A quasistatic contact problem with adhesion and friction for viscoelastic materials. Appl. Math. 37, No. 1, 39-52 (2010).
- M. Benbachir, K. Yadi, R. Bebbouchi, Slow and fast systems with Hamiltonian reduced problems, Electron. J. Diff. Eqs, Vol 2010 (2010) N° 6 pp 1-19.
- M. Souilah, On a Compact Perturbation of a Coercive Problem in Acoustic Scattering”. Journal of Natural Science and Mathematics (JNSM), Vol.3 No. 2, pp. 107-116, 2010.
- Yacin Adjabi, Fahd Jrad, Arezki Kessi Ugurham Mugan, Third order differential equations with fixed critical points, Applied mathematics and computation 208 (2009) 238-248s
- Z. Dahmani, M.M. Mesmoudi, R. Bebouchi, The extended tanh method for solving some evolution equations. I.J. of Nonlinear Science, Vol.7 (2009) pp 21-28.
- R. Bebbouch, The foam drainage equation with time and space fractional derivatives solved by the Adémian method, E.J.Qualitative Theory of Diff. Equ., N° 30(2008) p 1-10.
- M. Souilah, A New Nonlinear Filter for Parameters Identification in Dynamic Systems and Application to a Transmission Channel. Signal Processing, Vol.88/2, pp. 349-357, 2008. (Impact factor 2.23)
- R. Bebbouchi, L’analyse des erreurs : un thème possible de coopération québéco – algérienne, Actes du colloque GDM, 6-8 Juin 2007, Ed. UQAR.
- M. M. Cavalcanti, A. Khemmoudj and M. Medjden, Uniform stabilization of the damped Cauchy-Ventcel Problem with variable coefficients and dynamic boundary condition, J. Math. Anal. Appl, Volume 328, Issue 2, p. p. 900-930. 2007.
- R. Bebbouchi, Algèbre et algorithme: même source mais pas même parcours, actes du 8ème colloque maghrébin sur l’histoire des mathématiques arabes, publ. ATSM, Tunis (2006) pp 43- 48.
- M. Souilah, The Limiting Absorption Principle for a Transmission Problem in Acoustics. JPDE, Vol. 19, No. 4, pp. 359-368, 2006.
- M. Souilah, A New Strategy for Identification and Control of Mobile Robots. Engineering Simulation, Vol. 28, No. 3, pp. 35-48, 2006.
- O. Cherikh, R. Bebbouchi, On a singularly perturbed Liénard system with three equilibrium points. Proceedings Dynamical Systems and Applications, GBS Publishers and Distributors (INDIA), 2005, P 648-651.
- Y. Adjabi, A. Kessi Third order differential equation with fixed critical points, Travauxde l’institut de maths, Minsk, 2004, Tome 12, N° 2 p : 12-17.
- A. Khemmoudj and M. Medjden, Exponential Decay for the Semi-linear Damped Cauchy-Ventcel Problem, Bol. Soc. Paran. Mat., 22(2), (2004), 97-116.
- M. Souilah, A. Khoukhi, T. Aliziane, A New Multilevel Algorithm for Identification and Stochastic Adaptive Control of Industrial Manipulators. Engineering Simulation, Vol. 26, No. 4, pp. 83-98, 2004.
- R. Bebbouchi, Geometrical reflexions of the mathematician Eugène Dewulf inBougie,Historia Mathematica Vol. 29 (Août 2002) p 342 (abstract).
- A. Khoukhi, T. Aliziane et M. Souilah, Un Algorithme Multi-Niveau Pour l’Identification d’un Canal en Communication Numérique. JESA, Vol. 36, No. 4, pp. 519-537, 2002.
- A. Kessi, K. M’hemed-Messaoud, First order equations without mobile critical points, Regular and Chaotic Dynamics, V.6, N°1, 2001, pp:95-100.
- A. Kessi, M. Boukhelifa Fourth-order differential equations with integer indices of Fuchs, Regular and Chaotic Dynamics, V.6, N°4, 2001, pp:449-453.
Les articles soumis
- Z. Sabbagh & A. Khemmoudj, “Stabilization of a viscoelastic beam conveying fluid”, Mathematical Methods in the Applied Sciences, submitted. (22 juin 2016) MMA-16-8821.
- T. Hamadouche & A. Khemmoudj, “Energy decay rates for Bresse system with second sound and weak nonlinear boundary dissipation”, Zeitschrift fuer AngewandteMathematik und Physik, submitted. (17 juillet 2016)
- T. Hamadouche & A. Khemmoudj, “General decay of solution of a bresse system with viscoelastic boundary conditions”, Discrete and continuous dynamical systems SerieA DCDS-A submitted. (29 juin 2016) , DCDS-A 3413
- T. Hamadouche & A. Khemmoudj, “On the boundary control of memory type for aBresse system in thermoelasticity of type III”, Applied and Computational Mathematics, submitted (18 aout 2016)
- B. Lekdim & A. Khemmoudj, “Uniform decay of a viscoelastic nonlinear beam in two-dimensional space”, Nonlinear Differential Equations and Applications NoDEA, submitted (15 aout 2016).
(Liste à completer)